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The circular hydraulic jump commonly forms on a horizontal plate struck by a vertical 
jet of liquid. New observations of this phenomenon are described. 

A previously unreported instability of the jump is examined. This is shown to arise 
when the local Reynolds number R, just ahead of the jump exceeds a critical value of 
147. Prior to this instability, the flow behind the jump contains a closed eddy, the 
length of which decreases to zero as R, increases towards its critical value. Physical 
explanations for this flow structure and instability are proposed. 

Accurate measurements of liquid depths were made using a light-absorption tech- 
nique, in which a laser was shone through water containing a strong dye. Liquid 
depths ahead of and behind the jump were so determined and depth profiles of the 
jump in the stable regime were obtained. 

As the outer depth was increased, the jump closed in on the jet and eventually dis- 
appeared: this extinction of the jump is also investigated. 

1. Introduction 
When a vertical jet of liquid hits a horizontal plane, it  spreads out radially in a 

thin fast-moving film before experiencing a rather rapid increase of depth and reduc- 
tion of mean speed at a certain radial distance. The change of depth and speed is 
analogous to that of the bore or hydraulic jump and it has therefore been named the 
‘circular hydraulic jump’ (though, in fact, the transitjon may be less rapid than this 
name suggests). Various studies of this familiar phenomenon exist, notably by Watson 
(1964), Olsson & Turkdogan (1966), Ishigaietal. (1977), Bouhadef (1978) andNakorya- 
kov, Pokusaev & Troyan (1978). The heat-transfer characteristics of such flows, which 
are of interest for chemical engineering applications, have been studied by Chaudhury 
(1964) and Ishigai et aE. (1977). 

Watson’s (1  964) theoretical analysis of the flow ahead of the jump estimates how 
the velocity profile and film thickness vary with radial distance r .  For sufficiently small 
r (but away from the base of the jet) he predicts a uniform flow velocity modified by 
a growing Blasius boundary layer on the wall; while, at larger r ,  when the boundary 
layer extends to  the surface, the velocity profile is given by a similarity solution. To 
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conserve volume flux, the liquid depth first decreases as r increases, because of radial 
divergence; but it then increases again because of viscous retardation. The radial 
location r = rl of the jump depends both on the volume flux and on the downstream 
depth, and the jump may terminate the flow profile described above at any radius. 
The approximate location of the jump may be deduced from consideration of con- 
tinuity of flux and momentum balance. Inviscid theory, which assumes uniform 
constant velocities before and after the jump, leads to the prediction 

(see Watson 1964, 5 2), where 
Q = na2Uo = 2nrhUo 

is the volume flux, a is the jet radius just before impact, U, is the constant liquid 
velocity for r < rl and h(r) is the variable film thickness before the jump. The liquid 
depth just behind the jump is d and gravitational acceleration is g. 

Incorporation of viscous effects (see Watson 1964, Q 5) leads to the modified results 

rld2ga2 +- a2 = 0.01676 1 (2) R-1 + 0.1 826]-’ 
Q2 2n2r1d 

provided rl/a 2 0.3155& and 

( 1 . 2 4  

(1.2b) 

when r l /a  < 0.3155H. Here, R = Q/va is a Reynolds number defined relative to the 
radius of the impinging jet. The results ( 1 . 2 ~ )  and (1.2b) derive from the similarity 
profile and the Blasius profile respectively and are subject to the additional assumption 
that h2/d2 < 1, which is normally well satisfied. Since a2/2rld = h(rl)/d, the second 
term on the left-hand side of (1.2b) is small compared with r2. Accordingly, results 
(1 .1)  and (1.2b) agree, to order O(h2/d2), in the limit R -+ 00. 

Unfortunately, unlike (i . l) ,  results (1.2a, b )  do not yield explicit formulae for the 
jump radius r,; but these equations may be readily solved numerically in particular 
cases. Both ( 1 . 2 ~ )  and (1.2b) predict that the left-hand side depends on (r l /a)  R-B 
only. Watson’s own experimental results and those of others show considerable 
scatter, but agree broadly with ( 1 . 2 ~ 4  b)  provided the liquid flow remains laminar, 
the greatest discrepancies occurring when d / r l  exceeds 0.1. For turbulent flow, Watson 
derived results analogous to (1.2a, b) ,  but agreement with his experiment is then 
rather less satisfactory. The inviscid result (1 .1  ) is, at best, a very rough approximation. 
Olason & Turkdogan (1966) and Ishigai et al. (1977) measured liquid-film thicknesses 
ahead of the jump. Their results are in rough agreement with Watson’s theory, but 
Olsson & Turkdogan (1966) suggest that the similarity solution may not become 
established until rather larger radii than Watson’s theory predicts and also that the 
surface velocity may remain virtually constant right up to the jump, but with mag- 
nitude less than that of the impinging jet. 

Watson does not consider the detailed flow structure within and behind the jump. 
But to view the phenomenon as a simple discontinuity in depth and velocity is a great 
oversimplification : the actual flow structure is complex and varies markedly with 
changing conditions. Comments on the shape of the liquid surface at the jump are 
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made by Ishigai et al., who claim to distinguish four categories controlled by the 
Froude number Fr E B(gh)-i, where V and h are the mean velocity and the film 
thickness just ahead of the jump. These are (i) a stable smooth surface supporting a 
pair of standing waves (Fr < 2), (ii) a smooth gradual increase in depth (2 < Fr < 7),  
(iii) a narrower more rounded jump (7 < Fr < 15) and (iv) an unstable jump at which 
air bubbles are constantly entrained (Fr > 15). There is a shortage of quantitative 
data in support of such precise categorization, but there is no doubt that the jump 
does undergo substantial qualitative changes as the flow parameters vary. 

By an ingenious method, Nakoryakov et al. (1978) measured the wall shear stress 
as a function of radius, finding that this becomes negative within the jump region. 
This indicates a zone of reversed flow near the wall consistent with boundary-layer 
separation. They also made liquid depth measurements across the jump but found 
that, over part of the region, ‘accuracy. . . was inadequate owing to waves at theliquid 
surface’. 

Bouhadef’s (1978) theoretical treatment of the flow ahead of the jump appears less 
satisfactory than Watson’s, the velocity profile mainly being approximated by a 
quadratic function of depth. Bouhadef claims good agreement between measured 
and calculated jump radii, for a range of flow rates, but gives no details of these 
calculations. His measurement, by laser anemometry, of the velocity profile down- 
stream of the jump is likewise only briefly described. His results suggest the existence, 
immediately behind the jump, of a ‘wall-jet ’ profile. This finding is inconsistent with 
the presence of a reversed-flow region; and it seems likely that Bouhadef’s measure- 
ments correspond to larger local Reynolds numbers, for which the separation eddy 
disappears (see Q 4 following). 

The present work reports on some new investigations of the circular hydraulic jump, 
which shed further light on its detailed structure and stability. Two series of experi- 
ments were performed using different apparatus, the first with rudimentary equip- 
ment and the second with more sophisticated instrumentation. These are designated 
experiments A and B respectively. 

2. Experiment A 
(a)  The apparatus 

A small constant-head tank was fitted with an outflow tube and nozzle which de- 
livered a vertical laminar water jet. The flow rate could be adjusted by a screw clip 
fitted to the flexible tube. The jet was directed onto a horizontal glass plate set on the 
bottom of a rectangular Perspex fish tank. To facilitate complete wetting of the plate 
its edges were surrounded by absorbent paper laid flat on the tank bottom. The base 
of the tank and the plate had dimensions 29.8 x 19.4 cm and 8.1 x 10.7 ern respec- 
tively and the thickness of the pIate was 0.15 cm. 

The flow was started at a time t = 0 and complete wetting was quickly established 
(with manual assistance when necessary). As the liquid depth increased with time t ,  
the radius rl of the circular hydraulic jump progressively decreased and its appearance 
assumed various forms. The times of onset of various characteristic features were 
recorded by stopwatch. Runs were made at  various constant flow rates, which were 
measured both before and after each run by means of measuring jar and stopwatch. 
The jet emanated from the nozzle at  a height of 16.2 cm above the plate. Two nozzle 
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(a )  t ,  < t < t ,  (b )  t ,  < I < t ,  (c) t t ,  

FIGURE 1.  Flow configurations. (a) Typical jump; ( b )  jump closed in on jet; (c) meniscus rises 
up jet, The vertical scale is exaggerated. 

sizes were used, with internal diameters 6.15 mm and 2.11 mm. For a known flow 
rate, the mean liquid depth above the plate at each instant t is readily calculated, on 
making appropriate allowance for the small height of the plate above the tank bottom. 
Since the area within the circular hydraulic jump was small compared with that of 
the tank bottom, this mean depth is virtually the depth outside the jump. 

The diameter of the jet at  impact could not be measured with the tank in position. 
Accordingly, separate measurements at the appropriate location were made with the 
tank removed, for various flow rates, using a travelling microscope. In all cases for 
which measurements were made, no substantial variations due to capillary instability 
were present. The jet diameters with and without the tank were effectively identical 
for the jets used here, any upstream influence being confined to a few millimetres 
above the plate. Of course, at sufficiently low jet Reynolds numbers, a jet (of treacle, 
say) may meander, or coil, for some distance above the plate: but no hydraulic jump 
forms in such circumstances. 

( b )  Observed features 
At early times t ,  the jump radius rl was relatively large and the liquid depth increased 
smoothly across the jump much as in Isigai et d ’ s  category (ii) (their category (i) was 
never observed by us), but with small capillary ripples standing just upstream of the 
main jump. The flow was laminar, stable and axisymmetric. As the outer depth 
increased with time, the radius rl decreased and, a t  a certain instant t,, the jump 
became unstable. The instability took the form of temporally periodic fluctuations 
with a sometimes well-defined azimuthal wavelength around the circumference of the 
jump. The flow was then no longer stable nor strictly axisymmetric. The fluctuations 
within the jump region generated waves which propagated radially outwards. 

As the outer depth further increased, the radius continued to decrease and the 
oscillations became more violent with fewer ‘wavelengths ’ visible around the cir- 
cumference. At sufficiently large flow rates, but not a t  lower ones, air bubbles were 
entrained by the oscillations (cf. Isigai et aZ.’s case (iv)). Eventually, the oscillations 
reached the jet and, a short time later at time t,, the whole jump closed in around it. 
The oscillations and the radiating waves then virtually disappeared but bubble 
entrainment might persist. Finally, at time t ,  the meniscus ‘jumped up the jet ’ (see 
sketch in figure 1) and bubble entrainment ceased. Sporadic bubble entrainment 
thereafter was attributed to stray disturbances within the jet. Rather irregular de- 
formations of the free surface near the jet remained visible, but the jump had gone. 

Videotape recordings were made and these were used to confirm the objectivity of 
decisions regarding the various transition times. Oblique lighting was used to give 
enhanced contrast, the surface deformations casting light and dark ‘shadows’ on 
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FIG~RE 2. Time sequence of photographs from experiment B as outer depth increases. (a) 
stable jump; (6) stable jump with weakly fluctuating ‘outer ring’; (c) oscillatory instability of 
jump begins; (d) strong oscillations with radiating waves. Larger grid squares are 1 cm2. Surface 
features are directly visible by reflection of light. 

squared paper stuck to the underside of the tank bottom. The same sequence of 
phenomena was observed using the different apparatus of experiment B. Photographs 
of this sequence are shown in figures 2 and 3. Those of figure 2 were taken during 
experiment B, the surface features there being more directly visible by reflection of 
light; those of figure 3 are enlargements of ‘shadow’ photographs from experiment A ,  
which show the later stages and eventual disappearance of the jump. Note the total 
absence of radiating waves before onset of instability and the reduction of wave 
activity in figure 3 (d)  when the jump has disappeared. 

( c )  Measurements 
Given the volumetric flow rate Q and the onset times t,, t,, t,, the mean water depth d 
associated with each transition is readily found from the formula d = QtJA, where A 
is the area of the tank bottom. (To allow for the fact that the plate was 0-15 cm thick, 
either a little water was added prior to each run or a correction was made to the above 
formula. Errors so incurred were probably no larger than those associated with 
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calculated depth d for the three transitions identified a t  times t,, t ,  and t,. These are 
shown in figures 4 (a, b)  for nozzle diameters 6.15 mm, 2.11 mm respectively. 

The measured jet diameter at  a distance of 16.2 cm below the nozzle is shown in 
figure 5 versus flow rate Q for both nozzles. The substantial scatter is mainly due to 
difficulty in making accurate measurements with the travelling microscope: but 
calipers proved no more satisfactory. It may be deduced that, at  the same flow rate, 
the ratio of jet impact velocity with the small nozzle to that with the larger varies 
from about 1.5 at Q = 4 cm3 s-l to around 2.1 a t  Q = 11 cm3 s-l. A simple theoretical 
model of the variation of jet radius a with flow rate Q and nozzle height H proved 
inadequate and so is not described. 

Results for the onset of instability at  time t ,  in figures 4 (a, b )  show quite close agree- 
ment despite the differing nozzle sizes. Since the Froude numbers of the incoming flows 
are different for the two nozzles at  the same flow rate, Isigai et al.’s proposal of the 
Froude number as a governing parameter appears to be inappropriate. 

The ‘ closing up’ of the jump on the jet at  time t ,  and its h a 1  disappearance at  time 
t ,  occur at larger depths and times with the smaller nozzle than with the larger (for 
equal flow rates Q ) .  In other words, the jump moves inwards more slowly against the 
higher flow velocity. 

This experiment was conducted with rather low flow rates Q in the range 3 to 
14 cm3 5-1. The jet Reynolds number R in such cases varies between 5000 and 10000. 
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FIGURE 4. Flow rate Q versus outer depth d at transitions t,, t,, t,. + , onset of instability: 0, 
jump closes on jet; meniscus rises. Nozzle diameter is (a,) 6.15 mm and (b )  2.11 mm. 
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3. Experiment B 
(a )  The apparatus 

This second experiment was designed to allow direct measurement of the liquid thick- 
ness across the jump region, for a steady flow. The availability of a larger flow rate 
also permitted investigation of higher Reynolds numbers than in experiment A .  A 
light absorption technique was chosen to measure liquid thicknesses, the operating 
liquid being water to which a known quantity of methylene blue dye had been added. 
A helium-neon laser was shone from beneath a glass plate in the bottom of the 
apparatus, passing vertically through the glass and the dyed water upon it, and then 
into a detector. The detector was connected to a chart recorder which registered the 
intensity of the emergent beam. Laser and detector were mounted on the same vertical 
stand which could be moved horizontally in an arc of a circle a t  constant rate by a 
slow-speed electric motor. This enabled the laser-detector combination to track across 
the liquid from quite close to the incident jet to positions beyond the jump, giving a 
continuous record of beam intensity. 

If 1, denotes the beam intensity on passing through the glass plate alone, and I 
denotes that on passing through the plate and a liquid film of thickness h, it is to be 
expected that 

where a is an absorption coefficient which depends only on the dye concentration. 
Values of a appropriate to given concentrations were determined by calibration, using 
known volumes of dyed water in a glass dish. It follows that h = a-'ln ( I o / ] ) ,  and so 
the thickness is known. Since the thickness typically varies from around 0.1 mm to 
about 2.5 mm across the jump region, the absorption coefficient had to be chosen with 
some care. TOO low a coefficient gives little reduction in intensity for the thinner films 
and too high a coefficient allows little light to penetrate the thicker ones. 

The remainder of the apparatus was as follows. A large head tank with adjustable 
outlet tap was connected to a flexible pipe and 12 mm diameter nozzle. From this 
nozzle emerged the jet which fell vertically onto the horizontal glass plate mentioned 
above. This plate was sealed into an aperture cut from the base of a shallow square 
metal tank. This plate and tank assembly was mounted on stands to enable easy 
adjustment of height. From each corner of the tank small pipes led to a central mani- 
fold from which the water emerged into a small collecting reservoir. A pump returned 
the water to the head tank when required. The volumetric flow rate of the jet was 
determined using stopwatch and measuring jar both before and after each run. The 
diameter of the jet just before impact with the plate was estimated (to within about 
10 %) using calipers. To prevent formation of dry patches at  the edges of the plate 
and to facilitate an even flow of liquid from the plate, absorbent paper was usually 
placed flush with the edges. Reasonably constant operating conditions could be main- 
tained for as long as was required and external vibrations were eliminated as far as 
possible. 

( b )  Liquid thickness measurements 
From chart recordings of light intensity, scanning across the flow, profiles of the 
liquid thickness across the jump could be deduced from the absorption law (3.1). The 
water surface in the head tank was kept at approximately 46 cm above the nozzle 
outlet. The vertical distance from nozzle to plate could be varied. Results were 

I = Ioe-ah (3.1) 
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FIG~GE 6. Typical liquid depth profile across jump in stable regime. 
Nozzle height is 19 em. Flow rates are as indicated. 

obtained for different distances and various constant flow rates. Unfortunately, there 
was no satisfactory means of controlling, independently, the liquid depth downstream 
of the jump. 

Typical results are shown in figure 6 for three different flow rates. For these cases 
shown, the jump was stable and axisymmetric. The small rise and dip just before 
the jump was due to a standing capillary ripple. (This is also visible in photographs 
(a)  and ( b )  of figure 2.) 

Further measurements were made of jump radius and of depth just upstream and 
downstream of the jump, at  various flow rates. In some of these cases, the jump was 
unstable and, because of the oscillations, the jump profile could not be determined. 
However, the mean depth just downstream of the jump remained clearly defined. 
Some of these results were obtained under unsteady conditions, with the tank allowed 
to fill gradually with water, much as in experiment A .  This was done to achieve a 
range of jump positions and outer depths for fixed flow rates. Some measured data 
are shown in table 1, along with the quantity 2nv = &/rld where v estimates the mean 
liquid velocity just behind the jump. Direct measurements of v were not made. In 
fact, the slow flow some distance downstream of the jump was never truly axisymmet- 
ric: meanders and almost stagnant regions occurred doubtless because the water did 
not flow sufficiently uniformly from the edges of the plate. But this irregularity had 
little effect on the flow near the jump. The position of rl was that where the depth 
was estimated to be i d .  The inner depth h just ahead of the jump was in the range 
0.1 to 0.2 mm, but accuracy here was poor since a low dye concentration was used 
to yield accurate values of d. 

The data of table 1 were compared with Watson’s theoretical results (1.2a, b )  by 
plotting the logarithm of the left-hand side of these equations against log [ ( r l /u)  R-11. 
As Watson also found, many points lie far below his theoretical curve, the most distant 
ones usually having the smallest values of rJd .  Our measured values of r1 range from 
0-8 cm to 4.0 cm as compared with Watson’s higher range of about 2.5 cm to  17 em. 
For this lower range, it was clear that Watson’s theory gives a poor estimate of r l .  

It is seen from table 1 that the calculated velocity v varies rather slowly with Q 
and d. Corresponding data with the nozzle height reduced to 12 cm yielded rather 
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Flow rate Jet  radius Jump radius 
Q (ml s-I) a (mm) TI (om) 

4.48 1.0 1.2 
1.0 
0.8 

7.87 1.3 1.7 
1-5 
0.8 

11.6 1-55 2-3 
2.1 
1.4 

19.8 1.8 3.2 
3.05 

2.3 
26.0 2.15 4.0 

3.6 
2.3 

Outer depth 
d (mm) 

1.8 
2.3 
3.5 
1.9 
2.2 
3.5 
2.2 
2.4 
3.0 
2.2 
2.4 
3.5 
2.1 
2.5 
3.3 

TABLE 1.  Measurements for nozzle height 17 cm. 

Velocity 27rv 
= Q/r,d (cm s-l) 

20.7 
19.5 
16.0 
24.4 
23.8 
28.1 
22.9 
23.0 
27.6 
28.1 
27.0 
24.6 
31.7 
28.9 
34.0 

similar results, but with somewhat smaller rl (and hence greater v) than for the height 
of 17 cm a t  the same values of Q and d. Attempts to find a satisfactory empirical 
correlation of the flow quantities were unsuccessful. Three independent dimensionless 
parameters (R, d / a  and ga5/&2, say) are involved, even when surface tension is ignored, 
and one parameter rl/d which depends on all three; given our limited data this lack 
of success is hardly surprising. With a fixed nozzle size and height, a and Q are no 
longer independent quantities. In such cases, an empirical curve of v versus Q, chosen 
to fit measured data, might give a reasonably satisfactory means of predicting rL,  
given Q and d. 

( c )  Instability measurements 

To complement the measurements of experiment A relating to the onset of oscillatory 
instability, data were obtained on flow rate, jump radius and liquid depth just inside 
and outside the jump at  onset. As before, the tank was allowed to fill slowly at  a 
constant rate until the instability appeared. A typical time-sequence of photographs 
is shown in figure 2. It was noticed that, before onset of the vigorous oscillations at  
the jump, an ‘outer ring’ associated with a further very small change in depth 
appeared some distance downstream. This is clearly visible in figure 2(b ) .  This 
outer ring was usually somewhat irregular, as in figure 2 ( b ) ,  when it fluctuated in a 
weak, fairly random, manner very different from the later periodic oscillations of the 
jump. Occasionally, even when stable, it was elliptic rather than circular in shape; 
this was so when the flow downstream of the jump was particularly asymmetrical. 
Such a flow could be produced deliberately by blocking two of the four outlet pipes; 
but it also occurred spontaneously, due to uneven flow from the glass plate. The 
explanation of this outer ring is given in ( d )  below. As the outer depth increased, this 
outer ring decreased faster than the jump radius rl and the oscillatory instability set 
in at  about the time that the two came together. As well as examining the onset of 
the oscillatory instability of the jump, an attempt was made to record the onset of the 
much weaker fluctuations associated with the outer ring. This latter occurs before 
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FIGURE 7 .  (a )  Outer depth d and ( 6 )  inner depth h versus flow rate Q a t  onset of instabilities. 
Points enclosed by k --I denote onset of irregular fluotuations of the 'outer ring'; remaining 
points refer to onset of oscillatory instability of the jump. Nozzle height: 0 ,  12 cm; + , 19 cm; 
0, 28.5 om. 

the oscillatory instability, as the tank slowly fills; but its detection was inevitably 
rather subjective and imprecise. 

Observations of the onset of these two transitions are recorded in figure 7 (a), which 
shows flow rate Q against outer depth d for three different nozzle heights; and in 
figure 7 ( b ) ,  which shows Q against the depth h just inside the jump at onset of the 
oscillatory instability for a single nozzle height. The errors in measuring h may here 
be as great as 20 %, but those in d are much less. The outer depths at  onset for the 
two lower nozzle heights are indistinguishable; those for the greatest height are slightly 
smaller. 

Measurement of jet diameter 2a at the plate position was made using calipers. 
Though accuracy was poor, the following results may be taken as typical. At a flow 
rate Q of 30 ml s-1, 2a was approximately 5 mm, 4.3 mm, and 3.9 mm at  respective 
distances of 12 cm, 19 cm and 28.5 cm below the nozzle; while, with Q = 10 ml s-l, 
2a was about 2.8, 2-6 and 2.3 mm at these same distances. 

Figure 8 shows ff ow rate Q versus radius of jump rl at onset of oscillations for various 
nozzle heights from 12 cm to 28.5 cm. Remarkably, no consistent variation with 
nozzle height could be detected and the scatter of results accords with the expected 
errors in measuring rl at onset. These results lie closely about the line rl = 0.34 
+ 0.108Q in the chosen units, over a wide range of Q. The small scatter is evidence 
of the sharpness of the transition from 'almost steady' to oscillatory flow. 
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FIGURE 8. Jump radius r1 versus flow rate Q at onset of oscillatory instability, for various 
nozzle heights H .  0 ,  H = l2cm; a, H = 19cm; 0, H = 28.5 cm; +, various values within 
this range. Additional data points not shown are r l  = 3.7,  Q = 33-3 ( H  = 19) and rl = 4.5, 
Q = 43 ( H  = 12). 

( d )  Flow visualization 

To investigate further the flow structure near the jump, careful visual observations 
were made using undyed water containing a quantity of ‘Mearlmaid’ pearl essence. 
This preparation, used in the cosmetics industry, consists of minute ‘platelets’ 
rather like tiny fish scales: it is here preferable to aluminium flakes for flow visualiza- 
tion because of its lower density. Appropriate lighting and close scrutiny enabled the 
motion of individual ‘platelets ’ of the additive to be followed. 

Prior to the onset of oscillatory instability, a substantial region of reversed flow 
was seen. This stretched from the jump in depth downstream to the ‘outer ring’. 
That the reversed flow occurred next to the wall was confirmed by smearing small 
quantities of poster paint onto the plate: this moved upstream or downstream accord- 
ing to whether it was placed before or beyond the ‘outer ring’. The ‘outer ring’ is 
visible in figure 2 ( b )  because a tiny change in surface slope is brought about by re- 
attachment of the flow behind a long ‘eddy’ which extends downstream from the 
jump. The existence of the reversed flow region was also detected by Nakoryakov 
et al. (1978), as mentioned in the introduction. 

The rapid flow ahead of the jump remains rapid for some distance behind it by 
separating from the wall and riding over the slower-moving fluid in the eddy. That 
the boundary layer should separate is due to the sudden adverse pressure gradient 
associated with the hydrostatic pressure beneath the rapidly changing depth at the 
jump. This was first pointed out by Tani (1949); however, one cannot go all the way 
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FIGURE 9. Typical variations of jump radius r1 and radius of reattachment line r2 versus flow 
rate & with uncontrolled outer depth. The solid lines denote lengths of closed eddy. Measure- 
ments of r2 are rather rough owing to some asymmetry. At & = 31, r2 showed fluctuations. On 
further increasing &, T~ merged with rl and oscillatory instability ensued. 

with him in identifying the jump as essentially a boundary-layer separation phe- 
nomenon. 

The flow is gradually retarded by continuing viscous action : in particular, individual 
particles do not experience a sudden reduction in velocity on passing through the 
jump. To this extent, the term ‘circular hydraulic jump’ is a misnomer. The flow 
within and around the eddy is an essential part of the phenomenon; and the eddy may 
extend to radial distances almost twice that of the jump radius, though it is usually 
rather shorter. 

As the outer depth is allowed to increase, at  fixed flow rates, the eddy shortens; 
and, when it shrinks right up to the jump itself, the oscillatory instability begins. It 
proved impossible to make satisfactory simultaneous measurements of changing eddy 
length and jump radius in this situation: the ‘ outer ring ’ was frequently rather asym- 
metric and itself displayed a weak instability (as mentioned above). However, some 
typical values of jump radius rl and approximate reattachment radius r2 were recorded 
under steady conditions a t  different flow rates Q, where the water was left to flow 
naturally from the plate with the outer depth uncontrolled. These are shown in figure 
9; but no great accuracy is claimed for the estimates of T ~ .  At Q = 31 ml s-l the 
‘outer ring’, or reattachment line, showed the weak instability. When the flow rate 
was increased further, the oscillatory instability began. 

4. Discussion 
The flow structure described above is shown schematically in figure 10. It is only 

when the eddy shrinks in size that anything approaching a genuine discontinuity of 
velocity exists. However, even with a long eddy, considerations of mass conservation 
and momentum balance across the rather sudden depth change must still apply. 
But the vertical structure of the flow now plays a crucial role: mass and momentum 
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FIGURE 10. Flow structure (a)  with long eddy, (b )  with short eddy just before onset of 
oscillations ; inferred from visualization studies. The vertical scale is exaggerated. 

requirements are met, in the first instance, by the changed velocity profile associated 
with separation. Unlike the case of the classical hydraulic jump, there is here no 
need to suddenly ‘get rid ’ of excess energy by enhanced local dissipation or backwards 
radiation of wave energy through standing cnoidal waves. Instead, the flow gradually 
loses its energy over the substantial length of the eddy region; reattachment is the 
inevitable consequence of the absence of a pressure gradient. 

Just why the eddy shortens as the outer depth increases is still unknown, and poses 
a novel problem in boundary-layer theory. But, once it has shrunk to zero, the usual 
jump conditions associated with a discontinuous hydraulic jump (see, for example, 
Lighthill 1978) must more or less apply, in the modified form of Watson (1964). Now, 
energy must be lost at a finite rate from the immediate vicinity of the jump. Enhanced 
viscous dissipation by bubble entrainment and frothing is a possibility and must 
certainly occur in sufficiently strong jumps. But the jumps observed here employ a 
more orderly means. The oscillatory instability not only causes increased local dissi- 
pation by generating azimuthally varying motion : more importantly, it generates 
capillary-gravity waves which radiate outwards, carrying away energy. Whereas, in 
the classical hydraulic jump, it is standing cnoidal waves which shed energy down- 
stream, this option is not open in the present context. This is because the group velocity 
of capillary-gravity waves exceeds the phase velocity and so any waves standing 
against the radial flow must transmit energy upstream instead of downstream. If such 
waves are to transmit energy downstream, then their phase velocity must also be 
directed downstream and they must be generated by a temporally oscillating source. 
The observed azimuthal wavenumber around the jump almost certainly depends on 
surface tension. It is an easy calculation to show that capillary-gravity waves with 
realistically small amplitudes are capable of transporting all the excess energy away 
from the jump. The oscillatory instability of the jump comes to seem inevitable. 

The onset of instability may be identified with a critical Reynolds number R,. 
The local Reynolds number appropriate to a given radius r is Q(2nrv)-l. We now 
define a Reynolds number Rj, typical of conditions just ahead of the jump at, r = rl, 
by choosing r to be rl minus 0.34 cm. The line rl = 0.34 + O.l08Q, which was found 
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to fit the instability data of figure 6, then corresponds to a critical value of R, = 147 
for R, on taking v to be 0.01 om2 s-l. The jumps investigated were stable or unstable 
according as Rj was less or greater than 147, the length of the closed eddy decreasing 
as R, increased: this behaviour is the opposite of that of steady eddies behind bluff 
bodies, which increase in length as the Reynolds number increases. Further experi- 
ments with different liquid viscosities are desirable to reinforce t'hjs Reynolds number 
criterion. The alternative possibility of a critical local Froude number Fr = V(gh)-*, 
where V = &(2nr1 h)-l and h is the inner depth, is inconsistent with the experimental 
data of figures 7 ( b )  and 8. 

Experiment A was carried out by R.L. as an undergraduate vacation project 
supported by the Yapp Trust and supervised by A.C. Experiment B was mostly 
carried out by M.F. as a project in Honours Physics, jointly supervised by A.C. and 
P.G. The technical resources of the University of St Andrews Physics Department 
are gratefully acknowledged. 
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